Find the derivative of y with respect to the appropriate variable?? y=tan^-1•√(x^2-1)+csc^-1•x, x>1 Thank You!
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,349 answers
starTop subjects are Math, Science, and Business
You need to differentiate the function with respect to x, using chain rule, such that:
`(dy)/(dx) = 1/(1 + (sqrt(x^2-1))^2)*(sqrt(x^2-1))'*(x^2-1)' - 1/(|x|sqrt(x^2-1))`
`(dy)/(dx) = 1/(1 + x^2 - 1)*(1/(2sqrt(x^2-1)))*(2x) - 1/(|x|sqrt(x^2-1))`
`(dy)/(dx) = 1/x^2*(x/(sqrt(x^2-1))) - 1/(|x|sqrt(x^2-1))`
`(dy)/(dx) = 1/x*(1/(sqrt(x^2-1))) - 1/(|x|sqrt(x^2-1))`
If `x>0 => |x| = x` , hence, substituting x for |x| yields:
`(dy)/(dx) = 1/(x*sqrt(x^2-1)) - 1/(x*sqrt(x^2-1))`
`(dy)/(dx) = 0`
If `x<0 => |x| = -x` , hence, substituting -x for |x| yields:
`(dy)/(dx) = 1/(x*sqrt(x^2-1))+ 1/(x*sqrt(x^2-1))`
`(dy)/(dx) = 2/(x*sqrt(x^2-1))`
Hence, evaluating derivative of the given function, under the given conditions, yields `(dy)/(dx) = 0` (if x>0) or `(dy)/(dx) = 2/(x*sqrt(x^2-1))` (if x<0).
Related Questions
- Find the derivative of f(x) = 1+tan(x) / 1-tan(x)
- 2 Educator Answers
- Find the derivative of the function. Simplify if possible. `y = tan^(-1) x^2`
- 1 Educator Answer
- `y = sqrt((x-1)/(x^4 + 1))` Use logarithmic differentiation to find the derivative of the...
- 1 Educator Answer
- `y = ln sqrt((x + 1)/(x - 1)))` Find the derivative of the function.
- 1 Educator Answer
- Find dy/dx by implicit differentiation: tan(x-y) = y/(2+x^2)
- 1 Educator Answer