Find the derivative of the function.

Find the derivative of the function.  

y=  integral (cosx) to (sinx)  ln(4+3v)dv

y'(x)=__________________?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use integration by parts to evaluate the integral such that:

`int fg' = fg - int f'g`

`f= ln(4+3v) => f' = 3/(4+3v) dv`

`g' = dv => g = v`

`int_cos x^sin xln(4+3v) dv = vln(4+3v)|_cos x^sin x - int_cos x^sin x (3v)/(4+3v) dv`

You need to evaluate the integral `int_cos x^sin x (3v)/(4+3v) dv` , hence, you need to add and subtract 4 to numerator such that:

`int_cos x^sin x (3v+4-4)/(4+3v) dv = int_cos x^sin x (3v+4)/(4+3v) dv - int_cos x^sin x (4)/(4+3v) dv`

`int_cos x^sin x (3v+4-4)/(4+3v) dv = int_cos x^sin x dv - int_cos x^sin x (4)/(4+3v) dv`

You should use the following substitution to solve `int_cos x^sin x (4)/(4+3v) dv`  such that:

`4+3v = u => 4dv = du => dv = (du)/3`

`int (4)/(4+3v) dv = (4/3)int (du)/u = (4/3) ln|u| + c`

Substituting back `4+3v`  for u yields:

`int_cos x^sin x (4)/(4+3v) dv = (4/3) ln|4+3v||_cos x^sin x`

`int_cos x^sin x (3v+4-4)/(4+3v) dv = v|_cos x^sin x - (4/3) ln|4+3v||_cos x^sin x`

`int_cos x^sin x ln(4+3v) dv = vln(4+3v)|_cos x^sin x-v|_cos x^sin x+ (4/3) ln|4+3v||_cos x^sin x`

`int_cos x^sin x ln(4+3v) dv = sin x*ln(4+3sin x) - sin x + (4/3) ln|4+3sin x| - cos x*ln(4+3cos x) + cos x - (4/3) ln|4+3cos x|`

Hence, evaluating y(x) yields:

`y(x) = sin x*ln(4+3sin x) - sin x + (4/3) ln|4+3sin x| - cos x*ln(4+3cos x) + cos x - (4/3) ln|4+3cos x|`

You need to use chain rule and product rule to evaluate y'(x) such that:

`y'(x) = cos x*ln(4+3sin x) + sin x*((3cos x)/(4+3sin x)) - cos x + ((4cos x)/(4+3sin x)) + sin x*ln(4+3cos x) +cos x*((3sin x)/(4+3cos x))- sin x + ((4sin x)/(4+3cos x))`

Hence, evaluating the derivative of the function y(x) yields `y'(x) = cos x*ln(4+3sin x) + sin x*((3cos x)/(4+3sin x)) - cos x + ((4cos x)/(4+3sin x)) + sin x*ln(4+3cos x) + cos x*((3sin x)/(4+3cos x))- sin x + ((4sin x)/(4+3cos x)).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial