# Find the area of the parallelogram with vertices at A(5,9,1) B(5,3,8) C(13,19,-9) D(13,13,-2)

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You may split the parallelogram in two triangles and you may evaluate the areas of the triangles using the following formula called Heron's formula, such that:

`A = sqrt(p(p - l_1)(p - l_2)(p - l_2))`

l_1,l_2,l_3 represent the lengths of sides of triangle

`p = (l_1+l_2+l_3)/2 ` (half perimeter)

You need to evaluate the area of triangle `Delta ABC` , such that:

`A_(Delta ABC) = sqrt(p(p-AB)(p-AC)(p-BC))`

`p = (AB+BC+AC)/2`

`AB = sqrt((5-5)^2 + (3-9)^2 + (8-1)^2)`

`AB = sqrt(36 + 49) => AB = sqrt 45 = 3sqrt5`

`AC = sqrt((13-5)^2 + (19-9)^2 + (-9-1)^2)`

`AC = sqrt(64 + 100 + 100) => AC = sqrt 264 = 2sqrt 66`

`BC = sqrt((13-5)^2 + (19-3)^2 + (-9-8)^2)`

`BC = sqrt(64 + 256 + 289) => BC = sqrt609`

`p = (AB+BC+AC)/2 = (3sqrt5 + 2sqrt 66 + sqrt609)/2`

`p-AB = (-AB+BC+AC)/2 = (-3sqrt5 + 2sqrt 66 + sqrt609)/2`

`p-BC = (AB-BC+AC)/2 = (3sqrt5 - 2sqrt 66 + sqrt609)/2`

`p-AC = (AB+BC-AC)/2 = (3sqrt5 + 2sqrt 66 - sqrt609)/2`

`p*(p-AB) = ((2sqrt 66 + sqrt609)^2 - 45)/4`

`(p-BC)(p-AC) = (45 - (2sqrt 66 - sqrt609)^2)/4`

`(45 - (2sqrt 66 - sqrt609)^2)/4*((2sqrt 66 + sqrt609)^2 - 45)/4 = (45(2sqrt 66 + sqrt609)^2 - 45^2 - (2sqrt 66 - sqrt609)^2(2sqrt 66 + sqrt609)^2 + 45(2sqrt 66 - sqrt609)^2)/16`

You need to evaluate the area of triangle `Delta ADC` using the same Heron's formula.

Hence, evaluating the area of parallelogram ABCD yields `sqrt(p(p-AB)(p-AC)(p-BC)) + sqrt(p(p-AD)(p-AC)(p-DC)).`

3sqrt5