Find the area bounded by y=8-x^2 and y=x^2.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We first determine the points where the curves y = 8 - x^2 and y = x^2, meet.

8 - x^2 = x^2

=> x^2 = 4

=> x = 2 , x = -2

Now we find the integral of 8 - x^2 - x^2 between the limits x = -2 and x = 2

Int [ 8 - 2x^2 ]

=> 8x - 2x^3/3

Between the limits x = -2 and x = 2

8x - 2x^3/3 - 8x + 2x^3/3

=> 8*2 - 2*8/3 + 8*2 - 2*8/3

=> 32 - 32/3

=> 64/3

The area bounded by the curves is 64/3.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team