Find all functions f having the indicated property: All tangents to the graph of f pass through the origin

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Equation of a tangent line to the graph of function `f` at point `(x_0,y_0)` is given by `y=f(x_0)+f'(x_0)(x-x_0).`

Since every tangent passes through the origin `(0,0)` we have



Let us write the equation using usual notation for differential equations.

`x (dy)/(dx)=y`

Now we separate the variables.


Integrating the equation, we get

`ln y=ln x+ln c`

`c` is just some constant so `ln c` is also some constant. It is only more convenient to write it this way.

Taking antilogarithm gives us the final result.


There fore, our functions `f` have form `f(x)=cx` where `c in RR.` 

Graphically speaking these are all the lines that pass through the origin. Since the tangent to a line at any point is the line itself the required property is fulfilled.

Graph of several such functions `f` can be seen in the picture below.                                                                            

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Image (1 of 1)
Approved by eNotes Editorial