f(x)= xsqrt((x^2)+(4x)+13)+2sqrt((x^2)+(4x)+13) is defined on the interval [-6,5] A. f(x) is concave down on the region ? B. f(x) is concave up on the region  ?C. The inflection point for this function is at x=?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to solve the equation `f''(x) = 0`  to find where the graph of function is concave up or down and what the inflection points are. You need to find the first derivative first such that:

`f'(x) = sqrt(x^2+4x+13) + 2x(x+2)/(2sqrt(x^2+4x+13)) + 2*2(x+2)/(2sqrt(x^2+4x+13))` `f'(x) = sqrt(x^2+4x+13) + x(x+2)/(sqrt(x^2+4x+13)) + 2(x+2)/(sqrt(x^2+4x+13))`

`f'(x) = (x^2 + 4x + 13 + 2x + x^2 + 2x + 4)/sqrt(x^2+4x+13)`

`f'(x) = (2x^2 + 8x + 17)/sqrt(x^2+4x+13)`

You need to find the second derivative using quotient law such that:

`f''(x) = ((2x^2 + 8x + 17)'*sqrt(x^2+4x+13) - (2x^2 + 8x + 17)*(sqrt(x^2+4x+13))')/(x^2+4x+13)`

`f''(x) = ((4x+8)*sqrt(x^2+4x+13) - (2x^2 + 8x + 17)*(x+2)/(sqrt(x^2+4x+13)))/(x^2+4x+13)`

`f''(x) = ((x+2)*(4sqrt(x^2+4x+13) - (2x^2 + 8x + 17)/(sqrt(x^2+4x+13))))/(x^2+4x+13)`

You need to solve `f''(x)=0`  such that:

`(x+2)*(4sqrt(x^2+4x+13) - (2x^2 + 8x + 17)/(sqrt(x^2+4x+13))) = 0`

`x_1 = -2`

`4sqrt(x^2+4x+13) - (2x^2 + 8x + 17)/(sqrt(x^2+4x+13)) = 0`

Since `(sqrt(x^2+4x+13)) != 0,`  then `4(x^2+4x+13) - (2x^2 + 8x + 17) = 0`  such that:

`4x^2 + 16x + 52 - 2x^2 - 8x - 17 = 0`

Collecting like terms yields:

`2x^2 + 8x + 35 = 0`

You need to use quadratic formula such that:

`x_(1,2) = (-8+-sqrt(64 - 140))/4`

Notice that the equation has no real roots, hence the function `f(x) ` has no inflection points over `[-6,5]`  and `f''(x) gt 0`  over `[-6,5], ` hence the graph of the function is concave up over `[-6,5].`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team