`f(x)=x*sqrt(x^2+16)=x*(x^2+16)^(1/2)=>`
`f'(x)=1*(x^2+16)^(1/2)+x*1/2*(x^2+16)^(-1/2)*2x=>`
`f'(x)=sqrt(x^2+16)+x^2/sqrt(x^2+16)`
`f''(x)=1/2*(x^2+16)^(-1/2)*2x+[2x*sqrt(x^2+16)-x^2*1/2*(x^2+16)^(-1/2)*2x]/[x^2+16]=>`
`f''(x)=x/sqrt(x^2+16)+[2x*(x^2+16)-x^3]/[sqrt(x^2+16)*(x^2+16)]`
`f''(x)=[x*(x^2+16)+2x*(x^2+16)-x^3]/[sqrt(x^2+16)(x^2+16)]=>`
`f''(x)=[16x+2x^3+32x]/[sqrt(x^2+16)(x^2+16)]=>`
`f''(x)=[48x+2x^3]/[sqrt(x^2+16)(x^2+16)]`
Denominator is always positive =>
`f''(x)<0=>48x+2x^3>0=>`
`2x(24+x^2)>0=>2x>0=>x>0`
f(x) concave down when f''(x)<0=>concave down on `[-4,0)`
f(x) concave up when f''(x)>0=> concave up on `(0,6]`
Thus point of inflection at x=0
See
This Answer NowStart your subscription to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
`f(x)=x*sqrt(x^2+16)=x*(x^2+16)^(1/2)=>`
`f'(x)=1*(x^2+16)^(1/2)+x*1/2*(x^2+16)^(-1/2)*2x=>`
`f'(x)=sqrt(x^2+16)+x^2/sqrt(x^2+16)`
`f''(x)=1/2*(x^2+16)^(-1/2)*2x+[2x*sqrt(x^2+16)-x^2*1/2*(x^2+16)^(-1/2)*2x]/[x^2+16]=>`
`f''(x)=x/sqrt(x^2+16)+[2x*(x^2+16)-x^3]/[sqrt(x^2+16)*(x^2+16)]`
`f''(x)=[x*(x^2+16)+2x*(x^2+16)-x^3]/[sqrt(x^2+16)(x^2+16)]=>`
`f''(x)=[16x+2x^3+32x]/[sqrt(x^2+16)(x^2+16)]=>`
`f''(x)=[48x+2x^3]/[sqrt(x^2+16)(x^2+16)]`
Denominator is always positive =>
`f''(x)<0=>48x+2x^3>0=>`
`2x(24+x^2)>0=>2x>0=>x>0`
f(x) concave down when f''(x)<0=>concave down on `[-4,0)`
f(x) concave up when f''(x)>0=> concave up on `(0,6]`
Thus point of inflection at x=0