`f(x) = xe^x , n=4` Find the n'th Maclaurin polynomial for the function.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Maclaurin series is a special case of Taylor series that is centered at `c=0` . The expansion of the function about `0` follows the formula:

`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`

 or

`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`

To determine the Maclaurin polynomial of degree `n=4` for the given function `f(x)=xe^x` , we may apply the formula...

Check Out
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

Maclaurin series is a special case of Taylor series that is centered at `c=0` . The expansion of the function about `0` follows the formula:

`f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n`

 or

`f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...`

To determine the Maclaurin polynomial of degree `n=4` for the given function `f(x)=xe^x` , we may apply the formula for Maclaurin series.

To list `f^n(x)` up to `n=4` , we may apply the Product rule for differentiation: `d/(dx) (u*v) = u' *v +u*v'` and derivative property: `d/(dx) (f+g) = d/(dx) f +d/(dx) g` .

`f(x)=xe^x`

Let: `u =x` then `u' = 1`

      `v = e^x`  then `v' = e^x`

`d/(dx) (xe^x) =(1*e^x) + (x*e^x)`

                  `=e^x +xe^x`

`f'(x)=d/(dx) (xe^x)`

            `= e^x +xe^x`

`f^2(x) = d/(dx) (e^x +xe^x)`

           `=d/(dx) e^x + d/(dx) xe^x`

           `= e^x + (e^x+xe^x)`

           `= 2e^x+xe^x`

`f^3(x) = d/(dx) ( 2e^x +xe^x)`

            `=d/(dx) 2e^x + d/(dx) xe^x`

            `= 2e^x + (e^x+xe^x)`

            `= 3e^x+xe^x`

`f^4(x) = d/(dx) ( 3e^x +xe^x)`

            `=d/(dx) 3e^x + d/(dx) xe^x`

            `= 3e^x + (e^x+xe^x)`

            `= 4e^x+xe^x`

Plug-in `x=0` for each `f^n(x)` , we get:

`f(0)=0*e^0 `

         `=0*1`

          `=0`

`f'(0)=e^0+0*e^0`

           ` =1 +0*1`

           `=1`

`f^2(0)=2e^0+0*e^0`

            `=2*1 +0*1`

            `=2`

`f^3(0)=3e^0+0*e^0`

            `=3*1 +0*1`

            `=3`

`f^4(0)=4e^0+0*e^0`

            `=4*1 +0*1`

            `=4`

Plug-in the values on the formula for Maclaurin series, we get:

`sum_(n=0)^4 (f^n(0))/(n!) x^n`

       `= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4`

       `= 0+1/(1!)x+2/(2!)x^2+3/(3!)x^3+4/(4!)x^4 `

       `= 0+1/1x+2/2x^2+3/6x^3+4/24x^4`

       `= 0+x+x^2+1/2x^3+1/6x^4`

       `= x+x^2+1/2x^3+1/6x^4`

The Maclaurin polynomial of degree `n=4` for the given function `f(x)=xe^x ` will be:

`P(x)=x+x^2+1/2x^3+1/6x^4` 

Approved by eNotes Editorial Team