f(x)= x^2 / (x-2) find f'(1)
- print Print
- list Cite
Expert Answers
calendarEducator since 2008
write3,662 answers
starTop subjects are Math, Science, and Social Sciences
f(x) = x^2 /(x-2)
We know that if f= u/v , then f'= (u'v-uv')/v^2
Now we will assume that:
u= x^2 ==> u'=2x
v= x-2 ==> v' =1
Then f'(x) = [2x(x-2)- x^2(1)]/(x-2)^2
= (2x^2 -4x -x^2 )/(x-2)^2
= (x^2 -4x)/(x-2)^2
Now we will substitute with x=1
f'(1) = (1-4)/(1-2)^2
= -3/ 1= -3
Then f'(1)= -3
Related Questions
- f(x) = (x^2 + 3x -2)^2 find f'(1)
- 1 Educator Answer
- Given f(x) = k(2+x), find the value of k if f^-1 (-2) = -3
- 1 Educator Answer
- `f(x) = (x^2 - 1)^3, [-1, 2]` Find the absolute maximum and minimum values of f on the...
- 1 Educator Answer
- If f(x) = 3x^2 - x + 2, find f(2), f(-2), f(a), f(-a), f(a+1), 2*f(a), f(2a), f(a^2), (f(a))^2...
- 1 Educator Answer
- Find the function f such that `f'(x) = f(x)(1-f(x))` and `f(0) = 1/2`
- 2 Educator Answers
The function `f(x)= x^2 / (x-2)` .
Use the property `x^-1 = 1/x` . This allows us to write the given function `f(x)= x^2 / (x-2)` as `f(x)= x^2*(x-2)^-1` .
If `y = f(x)*g(x)` , `y' = f'(x)*g(x) + f(x)*g'(x)` and if `y = x^n, y' = n*x^(n-1)`
For the given function `f(x)= x^2*(x-2)^-1`
`f'(x) = (x^2)'*(x - 2)^-1 + x^2*((x-2)^-1)'`
= `2x*(x - 2)^-1 + x^2*-1*(x - 2)^-2`
At x = 1, `2x*(x - 2)^-1 + x^2*-1*(x - 2)^-2` = `2*1*(1 - 2)^-1 + 1^2*-1*(1 - 2)^-2`
= `2*-1 + -1*(1/1)`
= -2 - 1
= -3
The derivative of `f(x)= x^2 / (x-2)` at x = 1 is -3
f(x)=x^2/(x-2)
D= R-{2} ;than we could write
f(x)'= (x^2)'(x-2)-[(x-2)'(x^2)]/(x-2)^2
f(x)'= 2x(x-2)-1(x^2)/(x-2)^2
f(x)'=2x^2-4x-x^2/(x-2)^2
f(x)'=x^2-4x/(x-2)^2
f(x)'=x(x-4)/(x-2)^2
finally f(1)'=1(1-4)/1-2)^2
Another method to calculate a derivative of a function in a point is:
f'(1) = limit [f(x)-f(1)]/(x-1) = lim [x^2/(x-2) + 1]/(x-1)
f'(1) = lim (x^2 + x - 2)/(x-2)(x-1) = 0/0
If we'll substitute x by 1 into the numerator expression, we'll cancel it, so x=1 is the root of both, numerator and denominator. We'll write the numerator as a product.
x^2 + x - 2 = (x-1)(x+2)
f'(1) = lim (x-1)(x+2)/(x-1)(x-2) = lim (x+2)/(x-2)
f'(1) = (1+2)/(1-2) = 3/-1 = -3
f(x) = x^2/(x-2). To find f'(10.
Solution:
We first find f'(x) and then find the value of f'(x) at x=1.
f(x) = x^2/(x-2)
= (x^2-2x)+2x/(x-2)
= (x(x-2) + 2(x-2)+4)/(x-2)
=x +2 +4/(x-2)
f'(x) = {x +2 +4(x-2)}'.
= (x)'+(2)' +(4/(x-2))'. Using (d/dx)x^n = nx^(n-1) ..
= 1 +0 -2/(x-2)^2 , as (d/dx) (ax+b)^n = n(ax+b)^(n-1)* a. Therefore,
f'(x) = 1 -2/(x-2)^2.
f'(1) = 1 -2/(1-2)^2 = 1 -2/1 = -1
Student Answers