`f(x) = (x^2)tan(x)` Find the derivative of the trigonometric function.

1 Answer

hkj1385's profile pic

hkj1385 | (Level 1) Assistant Educator

Posted on

Note:- 1) If y = tanx ; then dy/dx = sec^2(x)

2) If y = x^n ; where 'n' = constant ; then dy/dx = n*x^(n-1)

3) If y = u*v ; where 'u' & 'v' are functions of 'x', then dy/dx = uv' + vu'

Now,

`f(x) = (x^2)tanx`

`f'(x) = 2x*tanx + (x^2)sec^2(x)`

`or, f'(x) = x[2tanx + (x^2)sec^2x]`

``