`f(x)=ln(sinh(x))`

Take note that the derivative formula of natural logarithm is

- `d/dx[ln(u)]=1/u*(du)/dx`

Applying this formula, the derivative of the function will be

`f'(x)=d/dx[ln(sinh(x))]`

`f'(x)=1/(sinh(x))* d/dx[sinh(x)]`

To take the derivative of hyperbolic sine, apply the formula

- `d/dx[sinh(u)] =cosh(u)*(du)/dx`

So f'(x) will become

`f'(x) =1/(sinh(x))* cosh(x)* d/dx(x)`

`f'(x)=1/(sinh(x))* cosh(x)*1`

`f'(x)= cosh(x)/sinh(x)`

Since the ratio of hyperbolic cosine to hyperbolic sine is equal to hyperbolic cotangent, the f'(x) will simplify to

`f'(x) =coth(x)`

**Therefore, the derivative of the given function is `f'(x)=coth(x)` .**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now