`F(x)=int_x^(x^2)(e^(t^2))dt`

From the fundamental theorem of calculus,

`int_x^(x^2)(e^(t^2))dt=F(x^2)-F(x)`

`d/dxint_x^(x^2)(e^(t^2))dt=F'(x^2).d/dx(x^2)-F'(x)`

`=2x(e^((x^2)^2))-e^(x^2)`

`=2x(e^(x^4))-e^(x^2)`

`F(x)=int_x^(x^2)(e^(t^2))dt`

From the fundamental theorem of calculus,

`int_x^(x^2)(e^(t^2))dt=F(x^2)-F(x)`

`d/dxint_x^(x^2)(e^(t^2))dt=F'(x^2).d/dx(x^2)-F'(x)`

`=2x(e^((x^2)^2))-e^(x^2)`

`=2x(e^(x^4))-e^(x^2)`