If f(x) = cosx/(1+sinx) find f'(x).

Expert Answers

An illustration of the letter 'A' in a speech bubbles

f(x) = cosx / (1+ sinx)

To differentiate we will will assume that:

u= cosx    ==>  we know that  du = -sinx

v= 1+ sinx   ==>    v' = cosc

Then, f(x) = u/v

We know that , f'(x) = (u'v- uv')/v^2

Let us subsitute with u and v :

==> f'(x) = [-sinx (1+sinx) - (cosx*cosx)]/(1+sinx)^2

Now let us expand the brackets:

==> f'(x) = (-sinx - sin^2 x - cos^2 x)/(1+sinx)^2

              = -sinx - (sin^2 x + cos^2 x)/(1+sinx)^2

But we know that : sin^2 x + cos^2 x = 1

==> f'(x) = (-sinx -1)/(1+sinx)^2

==> f'(x) = -(sinx+1)/(1+sinx)^2

==> f'(x) = -1/(1+sinx)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team