`f(x)=3/(3x+4) ,c=0` Find a power series for the function, centered at c and determine the interval of convergence.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A power series centered at `c=0` is follows the formula:

`sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...`

The given function `f(x)= 3/(3x+4)` resembles the power series:

`(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n`


` (1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...`

For better comparison, we let `3x+4 = 4 ((3x)/4 + 1)` . The function becomes:

`f(x)= 3/4 ((3x)/4 + 1)`

Apply Law of exponents: `1/x^n = x^(-n)` .

`f(x)= 3/4((3x)/4 + 1)^(-1)`


Apply the aforementioned formula for power series on  `((3x)/4 + 1)^(-1)` , we may replace "x" with "`(3x)/4` " and "`k` " with "`-1` ". We let:

 `(1+(3x)/4)^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) ((3x)/4) ^n`

 `=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)((3x)/4) ^n`

 `=1+(-1)((3x)/4) +(-1(-2))/(2!)((3x)/4)^2+(-1(-2)(-3))/(3!)((3x)/4)^3+(-1(-2)(-3)(-4)/(4!)((3x)/4)^4+...`

`=1-(3x)/4 +(2)/2((3x)/4)^2- 6/6((3x)/4)^3+24/24((3x)/4)^4+...`

`=1-(3x)/4 +((3x)/4)^2- ((3x)/4)^3+((3x)/4)^4+...`

`=1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...`

Applying `(1+(3x)/4)^(-1) =1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...`  we get:

`3/4((3x)/4 + 1)^(-1)= 3/4*[1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...]`

                      `=3/4-(9x)/16 +(27x^2)/64- (81x^3)/256+(243x^4)/1024+...`

                     `= sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n`

The power series of the function `f(x)=3/(3x+4)` centered at `c=0` is:

`3/(3x+4)=sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n`


`3/(3x+4)=3/4-(9x)/16 +(279x^2)/64- (81x^3)/256+(243x^4)/1024+...`

To determine the interval of convergence, we may apply geometric series test wherein the series `sum_(n=0)^oo a*r^n`  is convergent if `|r|lt1`  or `-1 ltrlt 1` . If `|r|gt=1` then the geometric series diverges.

Applying `(3/4)^(n+1) = (3/4)^n * (3/4)` on the series `sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n` , we get:

`sum_(n=0)^oo (-1)^n(3/4)^n(3/4)x^n =sum_(n=0)^oo(3/4) (-(3x)/4)^n`

By comparing `sum_(n=0)^oo(3/4) (-(3x)/4)^n` with  `sum_(n=0)^oo a*r^n` , we determine:`r =-(3x)/4` .

Apply the condition for convergence of geometric series: `|r|lt1` .


`|-1| *|(3x)/4|lt1`

`1 *|(3x)/4|lt1`



Multiply each sides by `4/3` :


`-4/3 ltxlt4/3`

Check the convergence at endpoints that may satisfy `|(3x)/4|=1` .

Let `x=-4/3` on `sum_(n=0)^oo(3/4) (-(3x)/4)^n` , we get:

`sum_(n=0)^oo(3/4) (-3/4*-4/3)^n=sum_(n=0)^oo(1)^n`

Using geometric series test,  the ` r =1` satisfy `|r| gt=1` . Thus, the series diverges at `x=-4/3` .

 Let `x=4/3` on `sum_(n=0)^oo(3/4) (-(3x)/4)^n` , we get:

 `sum_(n=0)^oo(3/4) (-3/4*4/3)^n=sum_(n=0)^oo(-1)^n`

 Using geometric series test,  the `r =-1` satisfy `|r| gt=1` . Thus, the series diverges at `x=-4/3` .

 Thus, the power series `sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n` has an interval of convergence: `-4/3 ltxlt4/3` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial