`f''(x) = 2, f'(2) = 5, f(2) = 10` Find the particular solution that satisfies the differential equation.

Textbook Question

Chapter 4, 4.1 - Problem 39 - Calculus of a Single Variable (10th Edition, Ron Larson).
See all solutions for this textbook.

1 Answer | Add Yours

gsarora17's profile pic

gsarora17 | (Level 2) Associate Educator

Posted on

`f''(x)=2`

`f'(x)=int2dx`

`f'(x)=2x+C_1`

Now let's find constant C_1 , given f'(2)=5

`5=2(2)+C_1`

`5=4+C_1`

`C_1=1`

`:.f'(x)=2x+1`

`f(x)=int(2x+1)dx`

`f(x)=(2x^2)/2+x+C_2`

`f(x)=x^2+x+C_2`

Now let's find constant C_2 , given f(2)=10

`10=2^2+2+C_2`

`10=4+2+C_2`

`C_2=10-6=4`

`:.f(x)=x^2+x+4`

We’ve answered 318,944 questions. We can answer yours, too.

Ask a question