`f(x)=1/sqrt(1-x)` Use the binomial series to find the Maclaurin series for the function.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 Binomial series is an example of an infinite series. When it is convergent at `|x|lt1` , we may follow the sum of the binomial series as `(1+x)^k` where `k` is any number. We may follow the formula:

`(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2) ...(k-n+1))/(n!) x^n`

or

`(1+x)^k = 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4+...`

To evaluate the given function `f(x) = 1/sqrt(1-x)` , we may apply radical property: `sqrt(x) = x^(1/2)` . The function becomes:

`f(x) = 1/ (1-x)^(1/2)`

Apply Law of Exponents: `1/x^n = x^(-n)` to rewrite  the function as:

`f(x) = (1-x)^(-1/2)`

or  ` f(x)= (1 -x)^(-0.5)`

 This now resembles `(1+x)^k` form. By comparing "`(1+x)^k` " with "`(1 -x)^(-0.5) or (1+(-x))^(-0.5)` ”, we have the corresponding values:

`x=-x` and `k =-0.5` .

Plug-in the values on the aforementioned formula for the binomial series, we get:

`(1-x)^(-0.5) =sum_(n=0)^oo (-0.5(-0.5-1)(-0.5-2)...(-0.5-n+1))/(n!)(-x)^n`

 `=1 + (-0.5)(-x) + (-0.5(-0.5-1))/(2!) (-x)^2 + (-0.5(-0.5-1)(-0.5-2))/(3!)(-x)^3 +(-0.5(-0.5-1)(-0.5-2)(-0.5-3))/(4!)(-x)^4+...`

`=1 + 0.5x + (-0.5(-1.5))/(1*2) (-1)^2x^2 + (-0.5(-1.5)(-2.5))/(1*2*3) (-1)^3x^3 +(-0.5(-1.5)(-2.5)(-3.5))/(1*2*3*4)(-1)^4x^4+...`

`=1 + 0.5x + 0.75/2 (1)x^2 + (-1.875)/6 (-1)x^3 +(6.5625)/24(1)x^4+...`

 `=1 + 1/2x + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+...`

Therefore, the Maclaurin series for the function `f(x) =1/sqrt(1-x)` can be expressed as:

`1/sqrt(1-x)=1 + x/2 + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+...` 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial