Given `f(x)=(1-e^x)/(x+e^x)` what is f'(x).

2 Answers | Add Yours

justaguide's profile pic

justaguide | College Teacher | (Level 2) Distinguished Educator

Posted on

If the function is `f(x) = (1 - x*e^x)/(x + e^x)` , f'(x) can be determined using the quotient rule.

`f'(x) = ((-x*e^x - e^x)(x + e^x) - (1 - x*e^x)(1 + e^x))/(x + e^x)^2`

=> `(-x^2*e^x - x*e^x - x*e^(2x) - e^(2x) - 1 + x*e^x - e^x + x*e^(2x))/(x + e^x)^2`

=> `(-x^2*e^x - e^(2x) - 1 - e^x)/(x + e^x)^2`

The derivative `f'(x) = (-x^2*e^x - e^(2x) - 1 - e^x)/(x + e^x)^2`

dylzzz's profile pic

dylzzz | Student, Undergraduate | (Level 1) Honors

Posted on

Thanks for your kindness.

Hoping for your answers for my future questions.

Thanks a lot eNotes and justaguide.

We’ve answered 318,995 questions. We can answer yours, too.

Ask a question