`f'(t) = 2t - 3sin(t), f(0) = 5` Find `f`.

Textbook Question

Chapter 4, Review - Problem 69 - Calculus: Early Transcendentals (7th Edition, James Stewart).
See all solutions for this textbook.

2 Answers | Add Yours

gsarora17's profile pic

gsarora17 | (Level 2) Associate Educator

Posted on

`f'(t)=2t-3sin(t)`

`f(t)=int(2t-3sin(t))dt`

`f(t)=2(t^2/2)-3(-cos(t))+C` ,C is constant

`f(t)=t^2+3cos(t)+C`

Now , evaluate C , given f(0)=5

`f(0)=5=0^2+3cos(0)+C`

`5=3+C`

`C=2`

`:.f(t)=t^2+3cos(t)+2`

 

balajia's profile pic

balajia | College Teacher | (Level 1) eNoter

Posted on

`f'(t)=2t-3sint`

Integrating both sides with respect to x,we get

`int f'(t) =int(2t-3sint)dt`

`f(t) = 2(t^2/2)-3(-cost)+c`

`= t^2+3cost+c`

Given f(0) = 5

`f(0)=0+3+c`

c=2

Therefore `f(t)= t^2+3cost+2`

We’ve answered 318,915 questions. We can answer yours, too.

Ask a question