If f is a differentiable function of three variables. Suppose w=f(x-y, y-z, z-x). Show that (dw/dx) + (dw/dy) + (dw/dz)=0

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find partial derivatives of function `w=f(x-y, y-z, z-x)`  such that:

`(del w)/(del x) = (del w)/(del f)*(del f)/(del x)`

`(del w)/(del x) = (del w)/(del f)*(1-1)`

`(del w)/(del x) = (del w)/(del f)*0`

`(del w)/(del x) = 0`

`(del w)/(del y) = (del w)/(del f)*(del f)/(del y)`

`(del w)/(del y) = (del w)/(del f)*(-1+1)`

`(del w)/(del y) = (del w)/(del f)*(0)`

`(del w)/(del y) = 0`

`(del w)/(del z) = (del w)/(del f)*(del f)/(del z)`

`(del w)/(del z) = (del w)/(del f)*(-1+1)`

`(del w)/(del z) = (del w)/(del f)*(0)`

`(del w)/(del z) = 0`

You need to add partial derivatives such that:

`(del w)/(del x) + (del w)/(del y) + (del w)/(del z) = 0+0+0= 0`

Hence, evaluating the partial derivatives of function  `w=f(x-y, y-z, z-x)`  yields that `(del w)/(del x) + (del w)/(del y) + (del w)/(del z) = 0.`

Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial