Express cos x + 3 sin x in the form Rcos(x − alpha), where R > 0 and 0< alpha < 90, giving the exact value of R and the value of alpha correct to 2 decimal places.

Expert Answers
jeew-m eNotes educator| Certified Educator


`=sqrt(1^2+3^2) {[1/sqrt(1^2+3^2)]cosx+[3/sqrt(1^2+3^2)]sinx}`

`= sqrt(10) {[1/sqrt(10)]cosx+[3/sqrt(10)]sinx}`

If 1,3 and `sqrt(10)` are legs of a triangle they have the relationship denoted by Pythagoras theorem.


`cos(alpha) =1/sqrt(10)`



`=sqrt(10)(cosx xx cosalpha+sinx xx sinalpha)`



This is in the form of `Rcos(x-alpha) ` where;


`alpha=cos^-1 (1/sqrt(10)) = 71.57^0`

arshadibrahim52 | Student

Solve the equation 5 x−1 = 5 x − 5, giving your answer correct to 3 significant figures.