Explain limit without hospitals lim (x goes to 0) (e^x-e^sinx)/(x-sinx)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the following remarkable limit such that:

`lim_(x->0) (e^(u(x)) - 1)/(u(x)) = 1`

You need to form the remarkable limit factoring out `e^(sin x)`  such that:

`lim_(x->0) e^(sin x)(e^x/(e^(sin x)) - 1)/(x - sinx)`

You should use the following property of exponentials, such that:

`a^x/a^y = a^(x-y)`

Reasoning by analogy yields:

`lim_(x->0) e^(sin x)(e^(x - sin x) - 1)/(x - sinx)`

Notice that the exponent `x - sin x`  coincides with denominator, hence, you may use the remarkable limit `lim_(x->0) (e^(u(x)) - 1)/(u(x)) = 1`  such that:

`lim_(x->0) e^(sin x)(e^(x - sin x) - 1)/(x - sinx) = lim_(x->0) e^(sin x)*lim_(x->0)(e^(x - sin x) - 1)/(x - sinx)`

`lim_(x->0) e^(sin x)(e^(x - sin x) - 1)/(x - sinx) = e^(sin 0)*1`

Since `sin 0 = 0`  yields:

`lim_(x->0) e^(sin x)(e^(x - sin x) - 1)/(x - sinx) = e^0`

`lim_(x->0) e^(sin x)(e^(x - sin x) - 1)/(x - sinx) = 1`

Hence, evaluating the given limit, using the remarkable limit `lim_(x->0) (e^(u(x)) - 1)/(u(x)) = 1` , yields `lim_(x->0) (e^x - e^(sin x))/(x - sinx) = 1.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team