We have to find the value of lim x--> -1 [(2x^2-x-3)/(x+1)]
If we substitute x = -1 in (2x^2-x-3)/(x+1) we get 0 / 0. So L'Hopital's theorem can be applied. We now have:
lim x--> -1 [(4x -1)/(1)]
substituing x = -1, we get (-4 - 1)/1
=> -5
Limit...
See
This Answer NowStart your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
We have to find the value of lim x--> -1 [(2x^2-x-3)/(x+1)]
If we substitute x = -1 in (2x^2-x-3)/(x+1) we get 0 / 0. So L'Hopital's theorem can be applied. We now have:
lim x--> -1 [(4x -1)/(1)]
substituing x = -1, we get (-4 - 1)/1
=> -5
Limit = -5