Evaluate the limit which exist:lim x-> 1-   (x^3 -1)/ (|x^3 - 1|) 

Expert Answers
sciencesolve eNotes educator| Certified Educator

You should substitute 1 for x in the equation under limit such that:

`lim_(x->1) (x^3-1)/|x^3-1| = (1-1)/|1-1| = 0/0`

You need to evaluate the side limits such that:

`lim_(x->1, x<1) (x^3-1)/|x^3-1| = lim_(x->1, x<1) (x^3-1)/(1 - x^3) = 0/0`

Since evaluating the limit yields an indetermination, you may use l'Hospital's theorem such that:

`lim_(x->1,x<1) (x^3-1)/(1 - x^3) = lim_(x->1) ((x^3-1)')/((1 - x^3)')`

`lim_(x->1) (x^3-1)/(1 - x^3) = lim_(x->1) (3x^2)/(-3x^2)`

Reducing like terms yields

`lim_(x->1) (x^3-1)/(1 - x^3) = -1`

`lim_(x->1, x>1) (x^3-1)/|x^3-1| = lim_(x->1, x>1) (x^3-1)/(x^3-1) = 0/0`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) ((x^3 - 1)')/((x^3 - 1)')`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) (3x^2)/(3x^2)`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = 1`

Conclusion: `lim_(x->1, x>1) = 1 != -1 lim_(x->1, x<1)`

Hence, evaluating side limits yields that they do not have equal values, thus, that there is no ordinary limit for the given function, under the given condition.

Access hundreds of thousands of answers with a free trial.

Start Free Trial
Ask a Question