Evaluate the limit which exist:lim x-> 1-   (x^3 -1)/ (|x^3 - 1|) 

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You should substitute 1 for x in the equation under limit such that:

`lim_(x->1) (x^3-1)/|x^3-1| = (1-1)/|1-1| = 0/0`

You need to evaluate the side limits such that:

`lim_(x->1, x<1) (x^3-1)/|x^3-1| = lim_(x->1, x<1) (x^3-1)/(1 - x^3) = 0/0`

Since evaluating the limit yields an indetermination, you may use l'Hospital's theorem such that:

`lim_(x->1,x<1) (x^3-1)/(1 - x^3) = lim_(x->1) ((x^3-1)')/((1 - x^3)')`

`lim_(x->1) (x^3-1)/(1 - x^3) = lim_(x->1) (3x^2)/(-3x^2)`

Reducing like terms yields

`lim_(x->1) (x^3-1)/(1 - x^3) = -1`

`lim_(x->1, x>1) (x^3-1)/|x^3-1| = lim_(x->1, x>1) (x^3-1)/(x^3-1) = 0/0`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) ((x^3 - 1)')/((x^3 - 1)')`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) (3x^2)/(3x^2)`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = 1`

Conclusion: `lim_(x->1, x>1) = 1 != -1 lim_(x->1, x<1)`

Hence, evaluating side limits yields that they do not have equal values, thus, that there is no ordinary limit for the given function, under the given condition.

We’ve answered 318,948 questions. We can answer yours, too.

Ask a question