Evaluate the limit using L'Hopital's rule

lim as x approaches infinity of (14(x^2))/(e^(9x))

 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to substitute `oo`  for x in equation under limit such that:

`lim_(x-gtoo)(14x^2)/(e^(9x)) = oo/oo`

You need to use l'Hospital's theorem such that:

`lim_(x-gtoo)((14x^2)')/((e^(9x))') = lim_(x-gtoo)(28x)/(9e^(9x))`

Substituting `oo `  for x yields an indetermination `oo/oo` , hence you need to use l'Hospital's theorem again such that:

`lim_(x-gtoo)(28x)/(9e^(9x)) = lim_(x-gtoo)((28x)')/((9e^(9x))')`

`lim_(x-gtoo)((28x)')/((9e^(9x))')= lim_(x-gtoo) 28/(81e^(9x))`

`lim_(x-gtoo) 28/(81e^(9x)) = (28/81)*lim_(x-gtoo) 1/(e^(9x))`

`lim_(x-gtoo) 28/(81e^(9x)) = (28/81)*(1/oo)`

`lim_(x-gtoo) 28/(81e^(9x)) = (28/81)*(0)`

`lim_(x-gtoo) 28/(81e^(9x)) = 0`

Hence, evaluating the limit to the given function yields `lim_(x-gtoo)(14x^2)/(e^(9x)) = 0.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial