We have to find the value of lim x--> 0 [ ln(1+x)/(sinx+sin3x)]

substituting x = 0, we get the indeterminate form 0/0. Therefore we can use l'Hopital's Rule and substitute the numerator and denominator with their derivatives.

=> lim x--> 0 [ (1/(1+x))/(cos x + 3*cos 3x)]

Substitute x = 0

[ (1/(1+x))/(cos x + 3*cos 3x)]

=> (1 / 1) / ( 1 + 3)

=> 1/4

**The required value of lim x--> 0 [ln(1+x)/(sinx+sin3x)] = (1/4)**

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now