We have to find the value of lim x--> 0 [ ln(1+x)/(sinx+sin3x)]

substituting x = 0, we get the indeterminate form 0/0. Therefore we can use l'Hopital's Rule and substitute the numerator and denominator with their derivatives.

=> lim x--> 0 [ (1/(1+x))/(cos x + 3*cos 3x)]

Substitute x = 0

[ (1/(1+x))/(cos x + 3*cos 3x)]

=> (1 / 1) / ( 1 + 3)

=> 1/4

**The required value of lim x--> 0 [ln(1+x)/(sinx+sin3x)] = (1/4)**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.