Math Questions and Answers

Start Your Free Trial

Evaluate the limit of function (7x^2+5x)/(8x^3+6x), x-->infinity.

Expert Answers info

hala718 eNotes educator | Certified Educator

calendarEducator since 2008

write3,662 answers

starTop subjects are Math, Science, and Social Sciences

To evaluate the limit first we will divide by the highest power of the function which is x^3.

==> lim (7x^2+5x)/(8x^3+6x) = lim x^3(7/x+5/x^2)/limx^3(8+6/x^2)

==> lim (7/x +5/x^2)/ lim (8+6/x^2) = 0+0/(8+0)=0/8=0

check Approved by eNotes Editorial



neela | Student

To find the lt(7x^2+5x)/(8x^3+6x), x-->infinity.

Solution:

As x approaches infinity both numerator and denominator goes to infinity. Being an indetrminate of the   infinity/infinity form this could be solved by L' Hospial's rule  of diffrentiating numerator and denominator and then taking the limit or dividing numerator and denominator by x^3 term by term and then taking the limit.

lt(7x^2+5x)/(8x^3+6x), x-->infinity.

= Lt (7x^2/x^3+5x/x^3)/(8x^3/x^3+6x/x^3) as x-->inf

=Lt(7/x+5/x^2)/(8+5/x^2) = (7*0+0)/(8+0) = 0/8 = 0

giorgiana1976 | Student

To evaluate the limit of the rational function, when x tends to +inf.,we'll factorize both, numerator and denominator, by the highest power of x, which in this case is x^3.

We'll have:

lim (7x^2+5x)/(8x^3+6x) = lim (7x^2+5x)/lim (8x^3+6x)

lim (7x^2+5x)/lim (8x^3+6x)  = lim x^3*(7/x + 5/x^2)/lim x^3*(8 + 6/x^2)

After reducing similar terms, we'll get:

lim (7/x + 5/x^2)/lim (8 + 6/x^2)= (0+0)/(8+0)= 0/8= 0.