The integral `int e^(2x)*sin(3x) dx` has to be evaluated.
Use integration by parts: `int u dv = u*v - int v*du`
`e^(2*x) = u` , `dv = sin (3*x) dx`
`du = 2*e^(2*x) dx` , `v = -cos(3*x)/3`
`int e^(2x)*sin(3x) dx`
=> `-e^(2x)*cos(3x)/3 + (2/3)*int cos(3*x) e^(2*x) dx`
Again use integration by parts for `int cos(3*x) e^(2*x) dx`
`u = e^(2x)` , `dv = cos (3x) dx`
`du = 2*e^(2x) dx` , `v = sin(3x)/3`
=> `e^(2x)*sin(3x)/3 - int sin(3x)/3 2*e^(2x) dx`
=> `e^(2x)*sin(3x)/3 - (2/3)*int sin(3x)e^(2x) dx`
`int e^(2x)*sin(3x) dx` = `-e^(2x)*cos(3x)/3 + (2/3)(e^(2x)*sin(3x)/3) - (4/9)*int sin(3x)e^(2x) dx`
=> `(13/9)int sin(3x)e^(2x) dx` = `-e^(2x)*cos(3x)/3 + (2/3)(e^(2x)*sin(3x)/3)`
=> `int sin(3x)e^(2x) dx` = `(-3*e^(2x)cos(3x) + 2*e^(2x)*sin(3x))/13`
The integral `int e^(2x)*sin(3x) dx` = `(2*e^(2x)*sin (3x)- 3*e^(2x)cos(3x))/13`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.