Evaluate the integral: `int e^(2x)*sin(3x) dx`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The integral `int e^(2x)*sin(3x) dx` has to be evaluated.

Use integration by parts: `int u dv = u*v - int v*du`

`e^(2*x) = u` , `dv = sin (3*x) dx`

`du = 2*e^(2*x) dx` , `v = -cos(3*x)/3`

`int e^(2x)*sin(3x) dx`

=> `-e^(2x)*cos(3x)/3 + (2/3)*int cos(3*x) e^(2*x) dx`

Again use integration by parts for `int cos(3*x) e^(2*x) dx`

`u = e^(2x)` , `dv = cos (3x) dx`

`du = 2*e^(2x) dx` , `v = sin(3x)/3`

=> `e^(2x)*sin(3x)/3 - int sin(3x)/3 2*e^(2x) dx`

=> `e^(2x)*sin(3x)/3 - (2/3)*int sin(3x)e^(2x) dx`

`int e^(2x)*sin(3x) dx` = `-e^(2x)*cos(3x)/3 + (2/3)(e^(2x)*sin(3x)/3) - (4/9)*int sin(3x)e^(2x) dx`

=> `(13/9)int sin(3x)e^(2x) dx` = `-e^(2x)*cos(3x)/3 + (2/3)(e^(2x)*sin(3x)/3)`

=> `int sin(3x)e^(2x) dx` = `(-3*e^(2x)cos(3x) + 2*e^(2x)*sin(3x))/13`

The integral `int e^(2x)*sin(3x) dx` = `(2*e^(2x)*sin (3x)- 3*e^(2x)cos(3x))/13`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial