Evaluate `int (lnx)/x dx` :
We ` `` `let `u=lnx` . Then `du=1/xdx` and we have:
`intudu=1/2u^2+C` . Substituting for `u` we get `1/2(lnx)^2+C` .
Thus the integral evaluates as `1/2(ln(x))^2+C`
Further Reading
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now