Evaluate the integral integrate of (dx)/((e^x)+e^(2x))
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to factor out `e^(2x)` to denominator such that:
`int (dx)/(e^(2x)(e^(-x) + 1)) = int (e^(-2x))/(e^(-x)+1)dx`
You should use the following substitution such that:
`e^(-x) + 1 = t => -e^(-x)dx = dt`
`e^(-x) = t - 1`
Changing the variable yields:
`int (e^(-2x))/(e^(-x)+1)dx = int (e^(-x))/(e^(-x)+1) (e^(-x)dx) =int (t - 1)/t dt `
Using the property of linearity yields:
`int -(t - 1)/t dt = -int t/t dt+ int 1/t dt`
`int -(t - 1)/t dt = -int dt+ int 1/t dt`
`int -(t - 1)/t dt = -t+ ln|t| + c`
Substituting back `e^(-x) + 1` for t yields:
`int (dx)/(e^(2x)(e^(-x) + 1)) =-(e^(-x) + 1)+ ln(e^(-x) + 1) + c`
Hence, evaluating the given indefinite integral yields `int (dx)/(e^(2x)(e^(-x) + 1)) = -(e^(-x) + 1) + ln(e^(-x) + 1) + c.`
Related Questions
- Evaluate the integral integrate of (e^(3x))/((e^x+1))dx
- 1 Educator Answer
- `int (x e^(2x))/(1 + 2x)^2 dx` Evaluate the integral
- 1 Educator Answer
- Evaluate the integral [ln(x)/(x) dx]
- 1 Educator Answer
- Evaluate the indefinite integral integrate of (e^2x-1)/(e^2x+1)dx
- 1 Educator Answer
- How do you find the integral of e^(-x)sin(2x)dx using integration by parts?Here's my work: u =...
- 1 Educator Answer