# Evaluate the integral integrate of ((5x^2-7x+22)/((x-1)(x^2+9)))dx

Luca B. | Certified Educator

calendarEducator since 2011

starTop subjects are Math, Science, and Business

You need to notice that the degree of numerator is smaller than the degree of denominator, hence, you may use the partial fraction decomposition, such that:

`(5x^2-7x+22)/((x-1)(x^2+9)) = A/(x-1) + (Bx + C)/(x^2+9)`

`5x^2-7x+22 = Ax^2 + 9A + Bx^2 + Cx - Bx - C`

`5x^2-7x+22 = x^2(A+B) + x(C-B) + 9A - C`

Equating the coefficients of like powers yields:

`A+B = 5 => A = 5-B`

`C-B = -7 => B-C = 7`

`9A-C = 22 => 9(5-B) - C = 22 => 45 - 9B - C = 22 => -9B - C = -23 => 9B + C = 23`

`B - C + 9B + C = 7 + 23 => 10B = 30 => B = 3 => A = 2 => C = -4`

`(5x^2-7x+22)/((x-1)(x^2+9)) = 2/(x-1) + (3x-4)/(x^2+9)`

Integrating both sides yields:

`int (5x^2-7x+22)/((x-1)(x^2+9)) dx= 2int 1/(x-1)dx + int (3x-4)/(x^2+9)dx`

`int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x- 1| + 3 int x/(x^2+9)dx - 4 int 1/(x^2+9)dx`

You should use the following substitution to evaluate `int x/(x^2+9)dx`  such that:

`x^2 + 9 = t => 2xdx = dt => xdx = (dt)/2`

`int x/(x^2+9)dx = (1/2) int (dt)/t = (1/2) ln |t| + c`

`int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x - 1| + (3/2) ln (x^2+9) - (4/3) arctan (x/3) + c`

Hence, evaluating the given integral yields `int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x - 1| + (3/2) ln (x^2+9) - (4/3) arctan (x/3) + c.`

check Approved by eNotes Editorial