Evaluate the integral integrate of ((5x^2-7x+22)/((x-1)(x^2+9)))dx
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to notice that the degree of numerator is smaller than the degree of denominator, hence, you may use the partial fraction decomposition, such that:
`(5x^2-7x+22)/((x-1)(x^2+9)) = A/(x-1) + (Bx + C)/(x^2+9)`
`5x^2-7x+22 = Ax^2 + 9A + Bx^2 + Cx - Bx - C`
`5x^2-7x+22 = x^2(A+B) + x(C-B) + 9A - C`
Equating the coefficients of like powers yields:
`A+B = 5 => A = 5-B`
`C-B = -7 => B-C = 7`
`9A-C = 22 => 9(5-B) - C = 22 => 45 - 9B - C = 22 => -9B - C = -23 => 9B + C = 23`
`B - C + 9B + C = 7 + 23 => 10B = 30 => B = 3 => A = 2 => C = -4`
`(5x^2-7x+22)/((x-1)(x^2+9)) = 2/(x-1) + (3x-4)/(x^2+9)`
Integrating both sides yields:
`int (5x^2-7x+22)/((x-1)(x^2+9)) dx= 2int 1/(x-1)dx + int (3x-4)/(x^2+9)dx`
`int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x- 1| + 3 int x/(x^2+9)dx - 4 int 1/(x^2+9)dx`
You should use the following substitution to evaluate `int x/(x^2+9)dx` such that:
`x^2 + 9 = t => 2xdx = dt => xdx = (dt)/2`
`int x/(x^2+9)dx = (1/2) int (dt)/t = (1/2) ln |t| + c`
`int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x - 1| + (3/2) ln (x^2+9) - (4/3) arctan (x/3) + c`
Hence, evaluating the given integral yields `int (5x^2-7x+22)/((x-1)(x^2+9)) dx = 2 ln|x - 1| + (3/2) ln (x^2+9) - (4/3) arctan (x/3) + c.`
Related Questions
- Evaluate the integral integrate of ((x^3-4x^2+3x+1)/(x^2+4))dx
- 2 Educator Answers
- `int (x^2 - 5x + 16)/((2x + 1)(x - 2)^2) dx` Evaluate the integral
- 1 Educator Answer
- Evaluate the integral [ln(x)/(x) dx]
- 1 Educator Answer
- Evaluate the integral integrate of (sin(x))^2(cos(x))^4 dx
- 1 Educator Answer
- `int x/sqrt(x^2 + x + 1) dx` Evaluate the integral
- 1 Educator Answer