Evaluate the integral of function y=cos2x/cos^2x*sin^2x.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have y = cos 2x / (cos x)^2*(sin x)^2

y = cos 2x / (cos x)^2*(sin x)^2

=> [(cos x)^2 - (sin  x)^2] /  (cos x)^2*(sin x)^2

=> 1/ (sin x)^2 - 1/ (cos x)^2

Now the integral of 1/ (sin x)^2 = -1 / tan x and the intgral of 1/ (cos x)^2 is tan x

Therefore Int [1/ (sin x)^2 - 1/ (cos x)^2]

=> -cot x - tanx + C

So the required integral is -cot x - tanx  + C

Approved by eNotes Editorial Team