evaluate the integral.   (7x^2)(sin pix) dx please explain as you work the problem  

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let I be `I=int(7x^2 sin (pi x) dx`

Integrate it by part

`u(x)=7x^2 u'(x)=14x`

`v'(x)=sin pi x v(x)=-1/(pi)cos pi x`

`I=-7/pi x^2cos (pi x) -int 14x*(-1/(pi)cos pi x) dx`

`I=-7/pi x^2cos (pi x) +14/pi int x*cos pi x) dx`

Integrate it by part again

`u=x u'(x)=1`

`v'(x)=cos(pi x), v(x)=1/(pi) sin pi x`

`I=-7/pi x^2cos (pi x) +14/(pi) (x/pi) sin pi x-int(1/pi) sin pi x dx)`

`I=-7/pi x^2cos (pi x) +14/(pi)^2 x sin pi x- 14/(pi)^2 int sin pi x dx`


`I=-7/pi x^2cos (pi x) +14/(pi)^2 x sin pi x+14/(pi)^3cos pi x +C `


See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team