`y = int(ln(x)+2)^2/xdx`

Let `u = ln(x)` , then,

`du = 1/x dx`

Then the integral changes into,

`y = int(u+2)^2du`

This gives,

`y = (u+2)^3/3 +c `

Where c is an arbitrary constant.

Replacing u,

`y = (ln(x)+2)^3/3 + c`

`y = int(ln(x)+2)^2/xdx`

Let `u = ln(x)` , then,

`du = 1/x dx`

Then the integral changes into,

`y = int(u+2)^2du`

This gives,

`y = (u+2)^3/3 +c `

Where c is an arbitrary constant.

Replacing u,

`y = (ln(x)+2)^3/3 + c`