Evaluate the indefinite integral. integrate of (x+6)/(x^2+36)dx
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to use the linearity property of integrals such that:
`int (x+6)/(x^2+36)dx = int x/(x^2+36)dx + 6 int 1/(x^2+36)dx`
You should use substitution to solve `int x/(x^2+36)dx` such that:
`x^2+36 = t => 2xdx = dt => xdx = (dt)/2`
`int x/(x^2+36)dx = int ((dt)/2)/t`
`int ((dt)/2)/t = (1/2)ln|t| + c`
Substituting back `x^2+36` for t yields:
`int x/(x^2+36)dx = (1/2)ln(x^2+36) + c`
You need to solve the integral `int 1/(x^2+36)dx` using the following formula such that:
`int 1/(x^2+a^2)dx = (1/a)arctan(x/a) + c`
Reasoning by analogy yields:
`int 1/(x^2+36)dx =(1/6)arctan(x/6) + c `
`int (x+6)/(x^2+36)dx = (1/2)ln(x^2+36) + 6*(1/6)arctan(x/6) + c `
`int (x+6)/(x^2+36)dx = ln sqrt(x^2+36) + arctan(x/6) + c`
Hence, evaluating the given indefinite integral yields`int (x+6)/(x^2+36)dx = ln sqrt(x^2+36) + arctan(x/6) + c.`
Related Questions
- Evaluate the indefinite integral integrate of sin^4(x)cos^4(x)dx
- 1 Educator Answer
- Evaluate the indefinite integral integrate of (x^3(ln(x))dx)
- 2 Educator Answers
- Evaluate the indefinite integral integrate of (x)(arcsin(x))dx
- 1 Educator Answer
- `int cos(pi/x)/(x^2) dx` Evaluate the indefinite integral.
- 1 Educator Answer
- Evaluate the integral integrate of (dx)/(x^2(sqrt(x^2-36)))
- 1 Educator Answer