Evaluate the indefinite integral integrate of (x^3(ln(x))dx)
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,349 answers
starTop subjects are Math, Science, and Business
You need to integrate by parts, hence, you need to use the following formula such that:
`int f(x)g'(x)dx = f(x)g(x) - int f'(x)*g(x)dx`
Considering `f(x) = ln x` and `g'(x) = x^3` yields:
`f(x) = ln x => f'(x) = 1/x`
`g'(x) = x^3 => g(x) = int x^3 dx = x^4/4`
`int x^3*ln x dx = (x^4*ln x)/4 - int (1/x)(x^4/4)dx`
`int x^3*ln x dx = (x^4*ln x)/4 - (1/4)int x^3 dx ` `int x^3*ln x dx = (x^4*ln x)/4 - x^4/16 + c`
Factoring out `x^4/4` yields:
`int x^3*ln x dx = (x^4/4)(ln x -1/4) + c`
Hence, evaluating the given indefinite integral using parts yields `int x^3*ln x dx = (x^4/4)(ln x - 1/4) + c` .
Related Questions
- Evaluate the integral [ln(x)/(x) dx]
- 1 Educator Answer
- Evaluate the indefinite integral integrate of sin^4(x)cos^4(x)dx
- 1 Educator Answer
- Evaluate the indefinite integral. integrate of cot(x)ln(sin(x))dx
- 2 Educator Answers
- Evaluate the indefinite integral integrate of (x)(arcsin(x))dx
- 1 Educator Answer
- `int x(2x + 5)^8 dx` Evaluate the indefinite integral.
- 1 Educator Answer
calendarEducator since 2012
write1,278 answers
starTop subjects are Math and Science
`int x^3 ln(x) dx`
To evaluate, use integration by parts. The formula is` int udv = uv - int vdu` .
So let,
`u = ln (x) ` and `dv= x^3 dx`
`du = 1/x dx ` `v=int x^3 dx=x^4/4`
Substitute u, v and du to the formula.
`int x^3 ln(x) dx = ln(x) * x^4/4 - int x^4/4 *1/xdx`
`int x^3 ln(x) dx=(x^4 ln(x))/4 - 1/4 int x^3 dx`
`int x^3 ln(x) dx=(x^4 ln(x))/4 - 1/4* x^4/4 + C`
`int x^3 ln(x) dx=(x^4 ln(x))/4 - x^4/16 + C`
Hence, `int x^3 ln(x) dx=(x^4 ln(x))/4 - x^4/16 + C` .