Evaluate the indefinite integral integrate of (t+4)/(t^4-2t^2+1)dt
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You should notice that the denominator represents the expansion of binomial `(t^2 - 1)^2` such that:
`int (t+4)/(t^4 - 2t^2 + 1)dt = int (t+4)/((t^2 - 1)^2)dt`
You need to use the property of linearity of integrals such that:
`int (t+4)/((t^2 - 1)^2)dt = int t/((t^2 - 1)^2)dt + int 4/((t^2 - 1)^2)dt`
You need to use substitution to evaluate `int t/((t^2 - 1)^2)dt` such that:
`t^2-1 = u => 2tdt = ` du
`int t/((t^2 - 1)^2)dt = int ((du)/2)/(u^2)`
`int ((du)/2)/(u^2) = (1/2)(-1/u) + c`
Substituting back `t^2-1` for u yields:
`int t/((t^2 - 1)^2)dt = -1/2*(1/(t^2-1)) + c`
You need to use partail fraction decomposition to evaluate `int 4/((t^2 - 1)^2)dt ` such that:
`4/((t^2 - 1)^2) = A/(t-1) + B/(t-1)^2 + C/(t+1) + D/(t+1)^2`
`4 = A(t-1)(t+1)^2 + B(t+1)^2 + C(t+1)(t-1)^2 + D(t-1)^2`
`4 = A(t^3 + 2t^2 + t - t^2 - 2t - 1) + B(t^2 + 2t + 1) + C(t^3 - 2t^2 + t + t^2 - 2t + 1) + D(t^2 - 2t + 1)`
`4 = At^3 + t^2(A + B - C + D) + t(-A + 2B - C - 2D) -A + B +C + D`
Equating coefficients of like parts yields:
`A = 0`
`-A + B +C + D = 4 => B +C + D = 4`
`B - C + D = 0`
`2B - C - 2D = 0`
`2B + 2D = 4`
`3B - D = 4 => 3B - D = 2B + 2D => B = 3D`
`6D + 2D = 4 => 8D = 4 => D = 4/8 => D =1/2 => B = 3/2`
`3/2 - C + 1/2 = 0 => 2 - C = 0 => C = 2`
`4/((t^2 - 1)^2) = 3/(2(t-1)^2) + 2/(t+1) + 1/(2(t+1)^2)`
Integrating both sides yields:
`int 4/((t^2 - 1)^2)dt = int 3/(2(t-1)^2)dt + int 2/(t+1)dt + int 1/(2(t+1)^2)dt`
`int 4/((t^2 - 1)^2)dt = -3/(2(t-1)) + 2ln|t+1| - 1/(2(t+1)) + c`
Hence, evaluating the given integral yields `int (t+4)/((t^2 - 1)^2)dt = -1/2*(1/(t^2-1))- 3/(2(t-1)) + 2ln|t+1| - 1/(2(t+1)) + c.`
Related Questions
- `int t sec^2 2t dt` Evaluate the integral
- 1 Educator Answer
- `int_0^(2pi) t^2 sin(2t) dt` Evaluate the integral
- 1 Educator Answer
- How to find the integral of int(te^t, -e^(-2t), te^t(^2)) dt?
- 1 Educator Answer
- Evaluate integral from 0 to sqrt3 of (t^2-1)/(t^4-1) dt.
- 1 Educator Answer
- `int 5^t sin(5^t) dt` Evaluate the indefinite integral.
- 1 Educator Answer