Evaluate the double integral over the rectangular region R double integration bounded region R (xy)/(sqrt(x^2+y^2+1))dA ; R={(x,y):0<=x<=1,0<=y<=1}

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to evaluate the following double integral such that:

`int int_R (xy)/(sqrt(x^2+y^2+1)) dA = int_0^1 int_0^1 (xy)/(sqrt(x^2+y^2+1)) dx dy`

You need to convert the double integral into an iterated integral, such that:

`int int_R (xy)/(sqrt(x^2+y^2+1)) dA = int_0^1 y(sqrt(x^2+y^2+1))_0^1 dy`

`int_0^1 y(sqrt(x^2+y^2+1))_0^1 dy = int_0^1 y(sqrt(y^2+2) - sqrt(y^2+1)) dy`

Using the property of linearity of integral yields:

`int_0^1 y(sqrt(y^2+2) - sqrt(y^2+1)) dy = int_0^1 y(sqrt(y^2+2))dy - int_0^1 ysqrt(y^2+1)) dy`

You need to use the following substitution such that:

`y^2+2 =t => 2ydy = dt => ydy = (dt)/2`

Changing the variable yields:

`int_2^3 (sqrt(t))(dt)/2 = (1/2)int_2^3 t^(1/2) dt`

`(1/2) int_2^3 t^(1/2) dt = (1/2) (2t^(3/2))/3|_2^3`

`(1/2) int_2^3 t^(1/2) dt = (3^(3/2))/3 - (2^(3/2))/3 `

`int_0^1 ysqrt(y^2+1)) dy = (1/2) int_1^2 t^(1/2) dt `

`(1/2) int_1^2 t^(1/2) dt = (2^(3/2))/3 - (1^(3/2))/3 `

`int_0^1 y(sqrt(y^2+2) - sqrt(y^2+1)) dy = (3^(3/2))/3 - (2^(3/2))/3 - (2^(3/2))/3+ (1^(3/2))/3 `

`int_0^1 y(sqrt(y^2+2) - sqrt(y^2+1)) dy = (3sqrt3 - 2sqrt2 - 2sqrt2 + 1)/3`

`int_0^1 y(sqrt(y^2+2) - sqrt(y^2+1)) dy = (3sqrt3 - 4sqrt2 + 1)/3`

Hence, evaluating the double integral over the given region yields `int int_R (xy)/(sqrt(x^2+y^2+1)) dA = (3sqrt3 - 4sqrt2 + 1)/3.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team