# Evaluate the definite integral: `int_0^ 6 te^(-t) dt`

### 1 Answer | Add Yours

`int_0^6te^(-t)dt`

To solve, apply integration by parts. The formula is`int udv=uv-intvdu` .

So let,

`u = t` and `dv=e^(-t)dt`

Then, determine du and v.

`du=1*dt` `v=int e^(-t)dt`

`du=dt` `v=-e^(-t) `

Substitute u,v and du to the formula of integration by parts.

`int te^(-t)dt=t*(-e^(-t)) - int -e^(-t)dt`

`= -te^(-t) + inte^(-t)dt`

`= -te^(-t) - e^(-t)`

Then, evaluate the limits of integral.

`int_0^6 te^(-t)dt = (-te^(-t) - e^(-t) ) ` `|_0^6`

`= (-6e^(-6)-e^(-6)) - (0-e^0) = -7e^(-6) +1 = 1-7e^(-6)`

**Hence, `int_0^6 te^(-t)dt = 1-7e^(-6)` .**