Evaluate the anti derivative of e^2x * cos 3x.
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,544 answers
starTop subjects are Math, Science, and Business
We have to find Int [e^2x * cos 3x dx]
Here the best way to solve would be to use integration by parts.
Int [u dv] = u*v – Int [v du]
take u = e^2x, du = 2*e^2x dx
dv = cos 3x dx, v = (1/3)* sin 3x
Int [e^2x * cos 3x dx]
=> [e^2x*sin 3x]/3 – (2/3)*Int [e^2x * sin 3x dx]
We have again landed up with an integral like the original with Int [e^2x * sin 3x dx].
So using integration by parts again, this time we take U = e^2x, dU = 2*e^2x dx
dV = sin 3x dx, V = (-1/3) cos 3x
Int [e^2x * sin 3x dx] = (- e^2x * cos 3x)/3 + (2/3)*Int [e^2x * cos 3x dx]
So we have
Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 – (2/3) [(- e^2x * cos 3x)/3 + (2/3)*Int [e^2x * cos 3x dx]]
=> Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*e^2x * cos 3x)/3 - (2/3)*(2/3)*Int [e^2x * cos 3x dx]]
=> Int [e^2x * cos 3x dx] + (2/3)*(2/3)*Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*(e^2x * cos 3x)/3
=> (13/9)* Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*(e^2x * cos 3x)/3
=> Int [e^2x * cos 3x dx] =3*[e^2x*sin 3x]/13 + 2*(e^2x * cos 3x)/13
=> Int [e^2x * cos 3x dx] = [3*(e^2x*sin 3x) + 2*(e^2x * cos 3x)]/13
The required result is
[3*(e^2x*sin 3x) + 2*e^2x*cos 3x]/13 + C
Related Questions
- How to evaluate the limit of (cos x - cos 3x) / x*sin x if x-->0 ?
- 1 Educator Answer
- What is the second derivative of the function f(x)=2x^3+e^2x+sin 2x-lnx?
- 1 Educator Answer
- What is the second derivative of y=e^5x+(lnx)/2x ?
- 1 Educator Answer
- What is the second derivative of the function f(x) given by f(x)=e^2x+sin2x/2x ?
- 1 Educator Answer
- Evaluate the integral `int (x*e^(2x))/(2x+1)^2 dx` .
- 1 Educator Answer