evaluate... evaluate; integral -10 to 10 (2e^x)/(sinhx+coshx) dx

Expert Answers info

sciencesolve eNotes educator | Certified Educator

calendarEducator since 2011

write5,349 answers

starTop subjects are Math, Science, and Business

You need to use the following formulas for `sinh x`  and `cosh x`  such that:

`sinh x = (e^x - e^(-x))/2`

`cosh x = (e^x+e^(-x))/2`

`sinh x + cosh x = (e^x - e^(-x) + e^x+ e^(-x))/2`

Reducing like terms yields:

`sinh x + cosh x = (2e^x)/2 => sinh x + cosh x = e^x`

Substituting `e^x`  for `sinh x + cosh x`  yields:

`int_(-10)^10 (2e^x)/e^x dx = int_(-10)^10 2 dx`

`int_(-10)^10 2 dx = 2x|_(-10)^10`

`int_(-10)^10 2 dx = 2(10 - (-10)) = 2*20`

`int_(-10)^10 2 dx = 40`

Hence, evaluating the given definite integral yields `int_(-10)^10 (2e^x)/(sinh x + cosh x) dx = 40.`

check Approved by eNotes Editorial

Unlock This Answer Now