In case of variation of equilibrium constant with temperature, we use the van't Hoff equation which states that:
`ln((k_2)/(k_1)) = (-DeltaH)/R (1/(T_2) - 1/(T_1))`
The first step is to get the value of Delta H.
k2 = 3.25x10^-2 T2 = 75+ 273.15 = 348.15 K
k1 = 8.84 T1 = 25 + 273.15 = 298.15 K
R = gas constant = 8.314 J/mol-K
`ln((3.25x10^-2)/(8.84)) = (-DeltaH)/(8.314) (1/(348.15) - 1/(298.15))`
`-5.6058 =(-DeltaH)/(8.314) (-4.8169x10^-4)`
`-Delta H = ((-5.6058)(8.314))/(-4.8169x10^-4)`
`(-Delta H = 96, 756.24 J/mol) -1`
`Delta H` = -96, 756.24 J/mol
When K = 1.00, we just change the parameter of either the K1 or K2. In this case we change the value of K2.
`ln((k_2)/(k_1)) = (-DeltaH)/R (1/(T_2) - 1/(T_1))`
k2 = 1.00 T2 = ?
k1 = 8.84 T1 = 25 + 273.15 = 298.15 K
R = gas constant = 8.314 J/mol-K
`DeltaH` = -96, 756.24 J/mol
`ln((1.00)/(8.84)) = (-(-96, 756.24))/(8.314) (1/(T_2) - 1/(298.15))`
`-2.1793 = 11637.75 (1/(T_2) - 3.354x10^-3)`
`1/(T_2) = (-2.1793)/(11637.75) +3.354x10^-3`
`1/(T_2) = 3.54126x10^-3`
`T_2` = 315.78 - 273.15 = 42.63 degrees Celsius
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now