`dy/dx = 5e^(-x/2)` Use integration to find a general solution to the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 The given problem: ` (dy)/(dx) = 5e^(-x/2)`  is in form of a first order ordinary differential equation. To evaluate this, we may follow the variable separable differential equation: `N(y) dy= M(x)dx`

Cross-multiply `dx` to the other side, we get:

`dy= 5e^(-x/2)dx`

In this form, we may now proceed to direct integration on both sides:

`int dy= int 5e^(-x/2)dx`

For the left side, we apply basic integration property: `int (dy)=y` .

For the right side, we may apply u-substitution by letting: `u = -x/2` then `du =-1/2 dx` or `-2du= dx` .

Plug-in the values: `-x/2=u` and `dx=-2du` , we get:

`int 5e^(-x/2)dx=int 5e^(u)* (-2 du)`

                  ` =int -10e^(u)du`

Apply the basic integration property: `int c*f(x)dx= c int f(x) dx` .

`int -10e^(u) du=(-10) int e^(u) du`

Apply basic integration formula for exponential function:

`(-10)int e^(u) du= -10e^(u)+C`

Plug-in` u=-x/2` on` -10e^(u)+C` , we get:

`int 5e^(-x/2) dx=-10e^(-x/2)+C`

Combining the results from both sides, we get the general solution of differential equation as:


See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial