`dy/dx = 2xsqrt(4x^2+1)` Use integration to find a general solution to the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the given problem:`(dy)/(dx) =2xsqrt(4x^2+1)` is a first order ordinary differential equation in a form of `(dy)/(dx) = f(x,y)` .

 To evaluate this, we rearrange it in a form of variable separable differential equation: `N(y) dy =M(x) dx` .

Cross-multiply `dx ` to the right side:`dy=2xsqrt(4x^2+1)dx` .

Apply direct integration on both sides: `intdy= int 2xsqrt(4x^2+1)dx` .

For the left side, we apply basic integration property: `int (dy)=y` .

For the right side, we may apply u-substitution by letting: `u = 4x^2+1` then `du=8x dx`  or `(du)/8=x dx` .

The integral becomes:

`int 2xsqrt(4x^2+1)dx=int 2sqrt(u)*(du)/8`

                               `= int (sqrt(u)du)/4`

We may apply the basic integration property: `int c*f(x)dx= c int f(x) dx` .

`int (sqrt(u)du)/4= 1/4int sqrt(u)du`

Apply Law of Exponent: `sqrt(x)= x^(1/2)` and Power Rule for integration : int `x^n= x^(n+1)/(n+1)+C` .

`1/4int sqrt(u)du =(1/4) int u^(1/2)du`


                 `=(1/4)u^(3/2)/((3/2)) +C`

                  `=(1/4)u^(3/2)*(2/3) +C`

                 ` =u^(3/2)/6+C`

Plug-in `u=4x^2+1` on `u^(3/2)/6+C` , we get:

`int 2xsqrt(4x^2+1)dx=(4x^2+1)^(3/2)/6+C`

Combining the results from both sides, we get the general solution of the differential equation as:


See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team