`dy/dx = 1/((x-1)sqrt(-4x^2+8x-1))` Solve the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 The given problem` (dy)/(dx) =1/((x-1)sqrt(-4x^2+8x+1)) ` is in form of a first order ordinary differential equation. To evaluate this, we may follow the variable separable differential equation: `N(y) dy= M(x)dx` .

`dy=1/((x-1)sqrt(-4x^2+8x+1)) dx`

Apply direct integration on both sides:

`int dy=int 1/((x-1)sqrt(-4x^2+8x+1)) dx`

For the left side, we apply basic integration property: `int (dy)=y.`

For the right side, we apply several substitutions to simplify it.

 Let `u =(x-1)` then `x=u+1` and `du=dx` . The integral becomes:

`int 1/((u)sqrt(-4x^2+8x+1)) dx =int 1/(usqrt(-4(u+1)^2+8(u+1)+1)) du`

`=int 1/(usqrt(-4(u^2+2u+1)+8u+8+1)) du`

`=int 1/(usqrt(-4u^2-8u-4+8u+8+1)) du`

`=int 1/(usqrt(-4u^2+5)) du`

Let `v = u^2` then `dv = 2u du` or `(dv)/(2u)=du` . The integral becomes:

`int 1/(usqrt(-4u^2+5)) du=int 1/(usqrt(-4v+5)) *(dv)/(2u)`

`=int (dv)/(2u^2sqrt(-4v+5))`

`=int (dv)/(2vsqrt(-4v+5))`

Apply the basic integration property: `int c*f(x)dx= c int f(x) dx` .

`int (dv)/(2vsqrt(-4v+5)) =(1/2)int (dv)/(vsqrt(-4v+5))`

Let `w= sqrt(-4v+5)` then `v= (5-w^2)/4` and `dw=-2/sqrt(-4v+5)dv` or

`(dw)/(-2)=1/sqrt(-4v+5)dv`

The integral becomes:

`(1/2)int (dv)/(vsqrt(-4v+5)) =(1/2)int 1/v*(dv)/sqrt(-4v+5)`

`=(1/2)int 1/((5-w^2)/4)*(dw)/(-2)`

`=(1/2)int 1*4/(5-w^2)*(dw)/(-2)`

`=(1/2)int -2/(5-w^2)dw`

`=(1/2)*-2 int 1/(5-w^2)dw`

`=(-1) int 1/(5-w^2)dw`

Apply basic integration formula for inverse hyperbolic tangent function:

`int (du)/(a^2-u^2)=(1/a)arctanh(u/a)+C`

Then, with corresponding values as: `a^2=5` and  `u^2=u^2` , we get: `a=sqrt(5)` and `u=w`  

`(-1) int 1/(5-w^2)dw = -1/sqrt(5) arctanh(w/sqrt(5))+C`

Recall `w=sqrt(-4v+5)`  and `v=u^2` then `w =sqrt(-4u^2+5).`

Plug-in `u=(x-1)` on `w =sqrt(-4u^2+5)` , we get:

`w =sqrt(-4(x-1)^2+5)`

`w=sqrt(-4(x^2-2x+1)+5)`

`w=sqrt(-4x^2+8x-4+5)`

`w=sqrt(-4x^2+8x+1)`

 

Plug-in `w=sqrt(-4x^2+8x+1)` on `-1/sqrt(5) arctanh(w/sqrt(5))+C` , we get:

`int 1/((x-1)sqrt(-4x^2+8x+1)) dx=1/sqrt(5)arctanh(sqrt(-4x^2+8x+1)/sqrt(5))+C`

`=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C`

Combining the results from both sides, we get the general solution of the differential equation as:

`y=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial