To find the minimum value of x^2+x-2 we find the derivative and equate it to 0 to solve for x. Using the value of x in the function we can find the lowest value.

f(x) = x^2 + x - 2

f'(x) = 2x + 1

2x + 1 = 0

=> x = -1/2

f(-1/2) = x^2 + x - 2

=> (-1/2)^2 +(-1/2) - 2

=> 1/4 - 1/2 - 2

=> -9/4

=> -2.25

**The minimum value of the function is -2.25**

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now