Assume the center of the support is at the origin.

(a) In the case of an ellipse where `((x-h)^2)/a^2+(y-k)^2/b^2=1` we have a=60 and b=40. (a is the length of the semi-major axis, or 1/2 the major axis which is 120 while b is the length of the semi-minor axis or 1/2 the minor axis). The center of the ellipse is at the origin so h=k=0.

Then the equation is `x^2/3600+y^2/1600=1`

(b) In the case of a parabola, assume the vertex lies on the y-axis. Then `y=a(x-h)^2+k` where h=0 and k=40. We also have the two intercepts, (-60,0) and (60,0). Using (60,0) to find a we get `0=a(60)^2+40==>a=-1/90`

So `y=-1/90x^2+40`

(c) In the case of the ellipse if x=30 we get

`900/3600+y^2/1600=1==>y^2=1200==>y~~34.64`

For the parabola with x=30 we get

`y=-1/90(30)^2+40==>y=30`

Since 30 is closer to 30.2 than 34.64 is, the parabola is a better model.

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now