You need to differentiate using the quotient law such that:

`((sinx+cosx)/(sinx-cosx))'= ((sinx+cosx)'*(sinx-cosx) - (sinx+cosx)*(sinx-cosx)')/((sinx-cosx)^2)`

`((sinx+cosx)/(sinx-cosx))'= ((cos x - sin x)*(sinx-cosx) - (sinx + cosx)*(cos x + sin x))/((sinx-cosx)^2)`

`((sinx+cosx)/(sinx-cosx))'= (-(sin x - cos x)^2 - (sinx + cosx)^2)/((sinx-cosx)^2)`

`((sinx+cosx)/(sinx-cosx))'= -(sin^2 x - 2sin x*cos x + cos^2 x + sin^2 x + 2sin x*cos x + cos^2 x)/((sinx-cosx)^2)`

Reducing like terms yields :

`((sinx+cosx)/(sinx-cosx))' = -(sin^2 x + cos^2 x + sin^2 x + cos^2 x)/((sinx-cosx)^2)`

You need to remember that `sin^2 x + cos^2 x = 1` such that:

`((sinx+cosx)/(sinx-cosx))' = (-2)/((sinx-cosx)^2)`

**Hence, differentiating with respect to x yields `((sinx+cosx)/(sinx-cosx))' = (-2)/((sinx-cosx)^2).` **

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now