To differentiate `f(x) = ln(ln(ln(x)))` use the Chain Rule for differentiation of nested function.
The rule is that ` `if `f(x) = u(v(w(x)))` where `u, v` and `w` are functions
`f'(x) = u'(v(w(x)))v'(w(x))w'(x)`
Using the fact that `d/dx lnx = 1/x` we have that
` ``f'(x) = 1/ln(ln(x))1/ln(x)1/(x)` answer to first question
To find the domain of `f(x)` we proceed as follows
The domain of `x in (0,oo)`
So we need `ln(ln(ln(x)))` such that `ln(ln(x)) in (0,oo)`
`implies ln(x) in (1, oo)`
`implies x in (e^1,oo)` answer to second question
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now