# Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)`lim_(n->oo)(ln(6n))/(ln(12n))=`

*print*Print*list*Cite

### 1 Answer

You need to evaluate the given limit, such that:

`lim_(n->oo) (ln(6n))/(ln(12n)) = oo/oo`

The indetermination oo/oo requests for you to use l'Hospital's theorem, such that:

`lim_(n->oo) (ln(6n))/(ln(12n)) = lim_(n->oo) ((ln(6n))')/((ln(12n))')`

`lim_(n->oo) ((ln(6n))')/((ln(12n))') = lim_(n->oo) (6/(6n))/(12/(12n))`

Reducing duplicate factors yields:

`lim_(n->oo) (ln(6n))/(ln(12n)) = lim_(n->oo) 1 = 1`

**Hence, since the sequence `(ln(6n))/(ln(12n))` converges to the limit 1, hence, the sequence is convergent.**